How to Develop LLM Apps with LangChain, OpenAI and YugabyteDB

Build LLM applications with LangChain, OpenAI, and YugaybteDB

Use YugaybteDB as the database backend for LLM applications

This tutorial demonstrates how to use LangChain to build applications with LLM integration. LangChain is a framework for developing applications powered by language models.

Follow the guide to learn how to build a scalable LLM application using the SQL chain capabilities of LangChain in conjunction with an OpenAI LLM. The application can query a PostgreSQL-compatible YugabyteDB database from natural language.

Prerequisites

  • Python 3
  • Docker

Set up the application

Download the application and provide settings specific to your deployment:

  1. Clone the repository.

    git clone https://github.com/YugabyteDB-Samples/yugabytedb-langchain-openai-shoe-store-search.git
    
  2. Install the application dependencies.

    Dependencies can be installed in a virtual environment, or globally on your machine.

    • Option 1 (recommended): Install Dependencies from requirements.txt in virtual environment:

      python3 -m venv yb-langchain-env
      source yb-langchain-env/bin/activate
      pip install -r requirements.txt
      # NOTE: Users with M1 Mac machines should use requirements-m1.txt instead:
      # pip install -r requirements-m1.txt
      
    • Option 2: Install Dependencies Globally:

      pip install langchain
      pip install psycopg2
      # NOTE: Users with M1 Mac machines should install the psycopg2 binary instead:
      # pip install psycopg2-binary
      pip install langchain_openai
      pip install langchain_experimental
      pip install flask
      pip install python-dotenv
      
  3. Create an OpenAI API Key and store its value in a secure location. This will be used to connect the application to the LLM to generate SQL queries and an appropriate response from the database.

  4. Configure the application environment variables in {project_directory/.env}.

Set up YugabyteDB

Start a 3-node YugabyteDB cluster in Docker (or feel free to use another deployment option):

# NOTE: if the ~/yb_docker_data already exists on your machine, delete and re-create it
mkdir ~/yb_docker_data

docker network create custom-network

docker run -d --name yugabytedb-node1 --net custom-network \
    -p 15433:15433 -p 7001:7000 -p 9001:9000 -p 5433:5433 \
    -v ~/yb_docker_data/node1:/home/yugabyte/yb_data --restart unless-stopped \
    yugabytedb/yugabyte:2.19.3.0-b140 \
    bin/yugabyted start \
    --base_dir=/home/yugabyte/yb_data --background=false

docker run -d --name yugabytedb-node2 --net custom-network \
    -p 15434:15433 -p 7002:7000 -p 9002:9000 -p 5434:5433 \
    -v ~/yb_docker_data/node2:/home/yugabyte/yb_data --restart unless-stopped \
    yugabytedb/yugabyte:2.19.3.0-b140 \
    bin/yugabyted start --join=yugabytedb-node1 \
    --base_dir=/home/yugabyte/yb_data --background=false

docker run -d --name yugabytedb-node3 --net custom-network \
    -p 15435:15433 -p 7003:7000 -p 9003:9000 -p 5435:5433 \
    -v ~/yb_docker_data/node3:/home/yugabyte/yb_data --restart unless-stopped \
    yugabytedb/yugabyte:2.19.3.0-b140 \
    bin/yugabyted start --join=yugabytedb-node1 \
    --base_dir=/home/yugabyte/yb_data --background=false

The database connectivity settings are provided in the {project_dir}/.env file and do not need to be changed if you started the cluster using the preceding command.

Navigate to the YugabyteDB UI to confirm that the database is up and running, at http://127.0.0.1:15433.

Load the e-commerce schema and seed data

This application requires an e-commerce database with a product catalog and inventory information. This schema includes products, users, purchases, and product_inventory. It also creates a read-only user role to prevent any destructive actions while querying the database directly from LangChain.

The pg_trgm PostgreSQL extension is installed to execute similarity searches on alphanumeric text.

  1. Copy the schema to the first node's Docker container.

    docker cp {project_dir}/sql/schema.sql yugabytedb-node1:/home
    
  2. Copy the seed data file to the Docker container.

    docker cp {project_dir}/sql/generated_data.sql yugabytedb-node1:/home
    
  3. Execute the SQL files against the database.

    docker exec -it yugabytedb-node1 bin/ysqlsh -h yugabytedb-node1 -c '\i /home/schema.sql'
    docker exec -it yugabytedb-node1 bin/ysqlsh -h yugabytedb-node1 -c '\i /home/generated_data.sql'
    

Start the application

The Flask server for this application exposes a REST endpoint which returns values from the database.

  1. Start the server.

    python3 app.py
    
    * Running on http://127.0.0.1:8080
    
  2. Send a POST request to the /queries endpoint with a relevant prompt. For instance:

    # What purchases have been made by user1?
    
    # What colors do the Intelligent Racer come in?
    
    # How many narrow shoes come in pink?
    
    # Find me shoes that are in stock and available in size 15.
    
    curl -X POST http://localhost:8080/your_endpoint -H "Content-Type: application/json" -d '{"user_prompt":"Find me shoes that are in stock and available in size 15."}'
    
    [
      {
        "color": [
          "yellow",
          "blue"
        ],
        "description": null,
        "name": "Efficient Jogger 1",
        "price": "110.08",
        "quantity": 22,
        "width": [
          "narrow",
          "wide"
        ]
      },
      {
        "color": [
          "blue",
          "yellow"
        ],
        "description": null,
        "name": "Efficient Jogger 8",
        "price": "143.63",
        "quantity": 85,
        "width": [
          "wide",
          "narrow"
        ]
      },
      ...
    ]
    

Review the application

The Python application relies on a custom prompt to provide additional context to the LLM, in order to generate more relevant responses. For instance, sample queries are provided to help suggest SQL syntax to OpenAI:

...
Query the database using PostgreSQL syntax.

The color and width columns are array types. The name column is of type VARCHAR.
An example query using an array columns would be:
SELECT * FROM products, unnest(color) as col WHERE col::text % SOME_COLOR;
or
SELECT * FROM products, unnest(width) as wid WHERE wid::text % SOME_WIDTH;

An example query using the name column would be:
select * from products where name ILIKE '%input_text%';
...

After setting the context, the user input can be used to complete the prompt.

...
Generate a PostgreSQL query using the input: {input_text}.     
Answer should be in the format of a JSON object. This object should have the key "query" with the SQL query and "query_response" as a JSON array of the query response.

After generating a prompt, the LLM and YugabyteDB database work in conjunction to generate a response. The application connects to the database, defining the columns to use when executing queries. The OpenAI LLM is instantiated and added to the SQLDatabaseChain. This chain is then invoked, generating and executing a SQL query and subsequently returning the data in the format defined in our prompt.

prompt = custom_prompt(user_prompt)

sql_database = SQLDatabase.from_uri(LOCALDB_URL_STRING, include_tables=["products", "users", "purchases", "product_inventory"])

llm = OpenAI(temperature=0, max_tokens=-1)
db_chain = SQLDatabaseChain(llm=llm, database=sql_database, verbose=True, use_query_checker=True,return_intermediate_steps=True)

try:
    nw_ans = db_chain.invoke(prompt)
    result = nw_ans["result"]
    result_json = json.loads(result)

    return result_json["query_response"]
except (Exception, psycopg2.Error) as error:
    print(error)
# SQLDatabaseChain invocation example:
> Entering new SQLDatabaseChain chain...

    Query the database using PostgreSQL syntax.

    Use the shoe_color enum to query the color. Do not query this column with any values not found in the shoe_color enum.
    Use the shoe_width enum to query the width. Do not query this column with any values not found in the shoe_width enum.

    The color and width columns are array types. The name column is of type VARCHAR.
    An example query using an array columns would be:
    SELECT * FROM products, unnest(color) as col WHERE col::text % SOME_COLOR;
    or
    SELECT * FROM products, unnest(width) as wid WHERE wid::text % SOME_WIDTH;

    An example query using the name column would be:
    select * from products where name ILIKE '%input_text%';

    It is not necessary to search on all columns, only those necessary for a query. 
    
    Generate a PostgreSQL query using the input: How many narrow shoes come in pink? How about blue?. 
    
    Answer should be in the format of a JSON object. This object should have the key "query" with the SQL query and "query_response" as a JSON array of the query response.
    
SQLQuery:SELECT COUNT(*) FROM product_inventory WHERE color = 'pink' AND width = 'narrow' UNION ALL SELECT COUNT(*) FROM product_inventory WHERE color = 'blue' AND width = 'narrow'
SQLResult: [(4,), (5,)]
Answer:{"query": "SELECT COUNT(*) FROM product_inventory WHERE color = 'pink' AND width = 'narrow' UNION ALL SELECT COUNT(*) FROM product_inventory WHERE color = 'blue' AND width = 'narrow'", "query_response": [{"count": 4}, {"count": 5}]}
> Finished chain.

Wrap-up

LangChain provides a powerful toolkit to application developers seeking LLM integrations. By connecting to YugabyteDB, users can access data directly, without the need for replication.

For more information about LangChain, see the LangChain documentation.

If you would like to learn more on integrating OpenAI with YugabyteDB, check out the Azure OpenAI tutorial.